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I. INTRODUCTION 

A number of recent publicationsl-S have described application of 
the NOVA one-dimensional, two-phase flow interior ballistic code6-9 to 
various gun/propelling charge configurations. In general, while reasonable 
agreement fietween predicted pressure-wave characteristics and experimental 
data (particularly as described by the pressure-difference profile 
depicted in Figure 1) has been shown for cased-ammunition guns, a similar 
level of agreement for bagged charges was not attained. It is tempting 
to attribute this disparity to the more obvious non-one-dimensionality 
of bagged-charge configurations (see Figure 2) which allow potentially 
significant radial velocities to develop in both gas and solid phases 
early in the ballistic cycle. Indeed, a two-dimensional, axisymmetric 
version of the NOVA code is currently under development, at least in 
part, in response to this lack of success. Nevertheless, before dismissing 
the one-dimensional NOVA code from treatment of problems associated with 
bagged charges, the following exercise was undertaken, providing a 
comparison between NOVA simulations and experimental data for performance 
of a 155-mm bagged charge at two extreme loading conditions. 

1c. W. Nelson, "Some Simulations of a 155-mm Howitzer with the NOVAE 
Code," USA ARRADCOM, USA Ballistic Research Laboratories Interim 
Memorandum Report No. 451, Aberdeen Proving Ground, MD, November 
1975. (No longer available.) 

2c. W. Nelson, "NOVAE Code Simulation of a 155-mm Howitzer with a 
Chamber Length Charge," USA ARRADCOM, USA Ballistic Research Laboratory 
Interim Memorandum Report No. 468, Aberdeen Proving Ground, MD, 
January 1976. (No longer available.) 

3 A. W. Horst, T. C. Smith, and S. E. Mitchell, "Key Design Parameters 
in Controlling Gun Environment Pressure Wave Phenomena - Theory Versus 
Experiment, 11 13th JANNAF Combustion Meeting, CPIA Publication 281, 
December 1976. 

4A. W. Horst and P. S. Gough, "Influence of Propellant Packaging on 
Performance of Navy Case Gun Ammunition," Journal of Ballistics, Vol. 
1, No. 3, pp. 229-258, 1977. 

5 A. II. Horst, C. Nelson, and I. May, "Flame Spreading in Granular 
Propellant Beds: A Diagnostic Comparison of Theory to Experiment," 
AIAA Paper No. 77-856, July 1977, AIAA/SAE 13th Propulsion Conference. 

6P. S. Gough, and F. J. Zwarts, "Theoretical Model for Ignition of 
Gun Propellant," SRC-R-67, Space Research Corporation, North Troy, VT, 
December 1972. 

7
P. S. Gough, "Fundamental Investigation of the Interior Ballistics 
of Guns," IHCR 74-1, Naval Ordnance Station, Indian Head, MD, July 1974. 

8 
P. S. Gough, "Computer Modeling of Interior Ballistics," IHCR 75-3, 
Naval Ordnance Station, Indian Head, MD, October 1975. 

9 
P. S. Gough, and F. J. Zwarts, "Some Fundamental Aspects of the 
Digital Simulation of Convective Burning in Porous Beds 11 AIAA P~er 
No. 77-855, AIAA/SAE 13th Propulsion Conference, July i9??. 
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II. CODE DESCRIPTION 

Several versions of the NOVA code have been generated since its 
birth in 1972. Documentation on the most recent, and certainly most 
powerful, NOVA code is undergoing preparation by Paul Gough Associates 
and will be published as a Naval Ordnance Station, Indian Head (NOS/IH) 
Contract Report. A recent AIAA publication9 provides an essentially 
accurate description of this code as used in the current study. 

NOVA consists of a two-phase flow treatment of the gun interior 
ballistic cycle formulated under the assumption of quasi-one-dimensional 
flow. The balance equations describe the evolution of averages of flow 
properties accompanying changes in mass, momentum, and energy arising 
out of interactions associated with combustion, interphase drag, and 
heat transfer. Constitutive laws include a covolume equation of state 
for the gas and an incompressible solid phase. Compaction of an 
aggregate of grains, however, is allowed, with granular stresses in 
excess of ambient gas pressure being taken to be in accord with steady 
state measurements. Interphase drag is represented by reference to the 
empirical, steady state correlations of ErgunlO and Anderssonll for fixed 
and fluidized beds, respectivyly. Interphase heat tl~nsfer is described 
similarly according to Denton 2 or Gelperin-Einstein . Functioning 
of the igniter is included by specifying a predetermined mass injection 
rate as a function of position and time. Flamespreading then follows 
from axial convection, with grain surface temperature being deduced 
from the heat transfer correlation and the unsteady, heat conduction 
equation, and ignition based on a surface temperature criterion. In 
addition, internal boundaries defined by discontinuities in porosity 
are treated explicitly, and the forward external boundary reflects the 
inertial and compactibility characteristics of any inert packaging 
elements present between the propellant bed and the base of the 

10s. Ergun~ "Fluid Flow Through Paaked Columns," 
48, pp. 89-95, 1952. 

Progr., Vol. 

11 K. E. B. Andersson, "Pressure Drop in Ideal Fluidization," ~· 
Sai., Vol. 15, pp. 276-297~ 1961. 

12w. H. Denton, "General Discussion on Heat Transfer," 
and AM. Soa. Meah Eng., London, 1951. 

Eno. --
13N. I. Gelperin, and V; G. Einstein, "Heat Transfer in Fluidized Beds," 

Fluidization, edited by J. F. Davidson and D. Harrison, Aaademia Press, 
1971. 
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projectile. Solutions are obtained using an explicit finite difference 
scheme based on the method of MacCormackl4 for points in the interior and 
the method of characteristics at internal and external boundaries. 

III. INPUT DATA 

The system modeled was the U.S. Army 155-mm, Ml98 Howitzer firing 
the M483Al Projectile with the M203El Propelling Charge (Zone 8). 
This charge is essentially the same as that depicted in Figure 3, with 
possible extreme loading configurations shown schematically in Figure 4. 
Since previously acquired experimental data had revealed significantly 
different levels of pressure waves accompanying the charge-spindle 
touch and maximum standoff conditions, both configurations were 
simulated. 

A complete listing of input data is included as an Appendix. 1-lany 
of the data are seen to be a result of direct measurements (e.g., 
configura! dimensions), to reflect values taken from the literature (e.g., 
thermal conductivities), or to be of an administrative nature. However, 
much of the required input is not readily available. Propellant 
burning rate data are often considered to be "adjustable parameters", 
available to fine-tune agreement between theory and experiment. For 
this study, burning rates were based on recent closed bomb testing of 
M30Al propellant performed at both the Naval Ordnance Station, Indian 
Head and the Ballistic Research Laboratory. Burning rate versus pressure 
data from half a dozen tests were lumped together, and exponential (aPn) 
fits to the data were obtained in a piecewise-continuous manner to 
reflect an apparent slope break, as shown in Figure 5. Closed bomb 
data below 20 MPa were extremely irreproducible and were disregarded 
for this exercise. Input data describing igniter performance were 
based on experimental measurements obtained using a 155-mm ballistic 
simulatorl5. Propellant thermochemical data were calculated using the 
BLAKE Codel6, as amended in August, 1978. Finally, projectile 
engraving/bore resistance data were based on experimental data 
acquired at BRL using instrumented projectiles (see Figure 6)1 7 . 

14 R. W. MacCor>rnack~ "The Effects of Viscosity in Hypervelocity Impact 
Cratering~" AIAA Paper No. 69-354~ AIAA ?th Aerospace Science Meeting 
1969. 

15K. J. Vnite~ USA Ballistic Research Laboratory~ Aberdeen Proving 
Ground~ MD~ Personal Communication~ December 19??. 

16E. Freedman~ "A Brief Users Guide for the BLAKE Program~ 11 USA ARRADCOM~ 
USA Ballistic Research Laboratory Interim Memorandum Report No. 249~ 
Aberdeen Proving Ground~ MD~ July 19?4. (No longer available.) 

17E. v. Clarke~ Jr.~ USA Ballistic Research Laboratory~ Aberdeen 
Proving Ground~ MD~ Personal Communication~ October 19?8. 
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IV. RESULTS AND DISCUSSION 

We comment first on the fact that while experimentally observed 
muzzle velocities and, to a lesser degree, maximum chamber pressures 
are usually quite reproducible, the presence of longitudinal pressure 
waves may pass all out unnoticed or be quite pronounced. Figures 7 and 
8 present pressure-time data recorded during firings of the M203El 
Charge, properly loaded in the gun chamber with the basepad approximately 
25 mm from the spindle face. This standoff distance is assured in the 
Ml99 Cannon by the presence of 25.4-mm bumps on the spindle face. The 
smooth pressurization profiles of Figure 7 may be associated with proper 
and prompt initiation of the centercore black powder charge, which in 
turn ignites the main propellant charge over a distributed longitudinal 
region in an effectively simultaneous time frame. On the other hand, 
late initiation of the centercore, perhaps resulting from misalignment 
between the spindle spithole and the centercore itself, might lead to 
direct ignition transfer from the basepad to the main propellant charge -
a more localized ignition, favoring the formation of pressure waves. 
It is also important to note that ignition delays for ambient (~21°C) 
firings usually fall in the 50-100 ms range, a figure an order of 
magnitude higher than that typically exhibited by cased charges employing 
high-pressure bayonet primers. 

A NOVA code simulation of this charge/cannon configuration, using 
the input data base described in the previous section and listed in the 
Appendix, provided the results depicted in Figure 9. Overall 
pressurization profiles are quite similar to the experimental data. In 
fact, considering the use of a completely independent input data base, 
the agreement might be termed remarkable, though perhaps fortuitous. 

Detailed analysis of a comparison of predicted and observed pressure
difference profiles, however, reveals some disturbing features (see 
Figure 101. First, we notice a strong, predicted positive difference 
(i.e., local pressurization at the breech end of the chamber) not observed 
experimentally. This prediction may be a consequence of the one
dimensional approximation, which requires that all basepad combustion 
products pass into the low permeability propellant bed, as opposed to 
venting around the charge external to the bag, rapidly equilibrating 
pressures throughout the chamber. The schematic representations of 
Figure 11 serve to clarify this point. This same configura! difference 
between NOVA and reality may also be responsible, in part, for the 
predicted, short ignition delays (~5 ms). Additional major contributors 
to the real-world delay C~6o ms) may be the bag and associated parasitic 
components themselves. As a result of the predicted, rapid ignition at 
the rear of the main charge, input data reflecting functioning of the 
igniter centercore are of no consequence, as they represent igniter 
output after flamespread throughout the bed has been calculated to be 
complete. Hence, NOVA predicts a monotonic propagation of flame forward 
through the bed, accompanied by a strong stagnation at the projectile 
base (indicated in Figure 10 by an initial reverse pressure difference of 
~- 20 MPa). However, the resulting longitudinal pressure wave is 

14 
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predicted to decrease rapidly in amplitude. The experimental curve 
exhibiting a similar initial reverse pressure-difference level (shown 
separately in Figure 8) does not reveal the same characteristic damping 
rate. This discrepancy may reflect some inadequacy of the interphase 
drag law included in NOVA, coupled perhaps with a misrepresentation of 
propellant bed rheology - neither element of constitutive physics being 
adequately supported by experimental data. 

As mentioned previously, a NOVA calculation was also performed to 
simulate the loading condition whereby the propelling charge is pushed 
all the way forward against the projectile base. With the M483Al 
Projectile and the M203El Propelling Charge, this configuration may 
result in as much as 150 mm between the spindle face and the base of 
the charge. With the exception of this initial positioning of the 
charge, input data remained the same as presented in the Appendix. 
Figure 12 presents pressurization profiles resulting from this calculation. 
An increased level of longitudinal pressure waves is indicated. A 
comparison of this predicted pressure-difference profile to a band of 
maximum-standoff, firing data is shown in Figure 13. We see excellent 
qualitative and fairly good quantitative agreement between theory and 
experiment. As before, the predicted pressure waves tend to dampen out 
more rapidly than is indicated by the firing data. Of more concern, 
however, is the continued disparity between NOVA and reality prior to 
completion of flamespread and the initial stagnation at the projectile 
base. We still observe an order of magnitude difference in ignition 
delays between experiment and theory (not obvious in the figures because 
zero reference times were shifted when presenting experimental data). 

The one-dimensional approximation does appear, however, to have 
provided a much more satisfactory simulation of the maximum charge 
standoff configuration than of the nominal 25-mm condition. This 
improvement may result chiefly from an increased likelihood of largely 
base ignition of the main charge at maximum standoff, as a consequence 
of the poorer interface between the primer spithole and the igniter 
centercore charge. Coupled with a slight reduction in annular ullage 
external to the charge (because of the tapered gun chamber) and elimina
tion of the forward reservoir of ullage, this mode of ignition may lead 
to a nearly one-dimensional process (at least on the macroscopic 
level), more successfully represented in NOVA. 

V. CONCLUDING REMARKS 

A NOVA simulation of a 155-mm, Ml98 Howitzer, employing an M203El 
(Zone 8) Propelling Charge and described by an independently acquired 
data base (including propellant burning rates and projectile engraving 
friction/bore resistance), led to a surprisingly good simulation of 
gross interior ballistic parameters. However, a more detailed analysis 
of accompanying two-phase flow phenomena for normal loading (25-mm 
standoff) of the charge revealed a failure to accurately simulate 
experienced ignition delays and subsequent pressure-wave characteristics. 
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An attempt to simulate the same system with maximum allowable 
charge standoff C~ lSOmm) led to improved agreement between theory 
and experiment with respect to pressure waves, particularly as depicted 
by the pressure-difference profile, but not to ignition delays. Once 
combustion at the base of the charge commences, however, the remainder 
of the prediction compares quite favorably with previous NOVA successes 
in simulating cased charges. Better simulation of the maximum standoff 
configuration may well be the result of bringing reality more into line 
with the one-dimensional view of life to which NOVA is presently 
constrained. 

Two-dimensional and, perhaps to a somewhat lesser degree, quasi
two-dimensionall8 representations should greatly facilitate modeling 
of bagged charges, particularly when centercore ignition dominates. 
Before any significant gains can be realized from a multi-dimensional 
representation, however, such features of the charge as bag cloth 
rupture strength and parasitic component properties may have to be 
investigated and incorporated into the code. Accurate simulation of 
ignition delays experienced with low-pressure ignition systems may also 
require incorporation of a more realistic criterion for propellant ignition, 
as well as recognition of a more complicated sequence of events involved 
in the transition to full combustion. The adequacy of the current 
surface temperature criterion, at least for application to modeling of 
flamespread and pressure waves, associated with bagged charges will be 
more appropriately investigated within the framework of multi-dimensional 
codes now under development. 

18 P. S. Gough3 "Theoretical Study of ThJo-Phase Flow Associated with 
Granular Bag Charges 3

11 USA ARRADCOM3 USA Ballistic Research Laboratory 
Contract Report No. 00381 3 Aberdeen ~oving Ground~ MD~ 
September 1978. (AD #A062144) 
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